Bridge-Weigh-In-Motion Services 走行車両重量分析サービス

橋梁に損傷を与える過積載車両の台数と重量の情報を提供

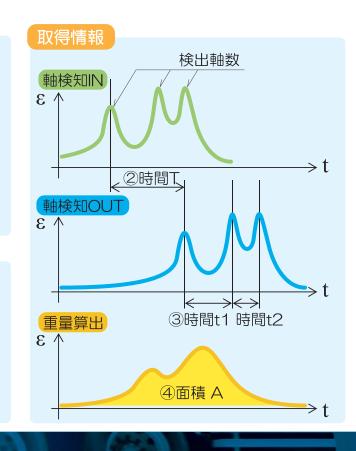
B-WIMとは

B-WIM(Bridge-Weigh-In-Motion) は橋梁の動的ひずみを利用して、 走行しているクルマの重さを量る技術です。

B-WIM の原理

- 車線あたり3つのひずみゲージ(加速度も可)
- ♂ ひずみゲージは桁・床版裏面に設置 橋面上の作業は不要
- 重量が既知の車両を通過させて確認

B-WIMの構成


算出内容

速度V = 1距離L / ②時間T

軸間距離 = 速度V x ③時間t1

車両重量 = (④面積A × 速度V) ∝ 既知の重さ ※ 詳細には車両重量は軸重の足し合わせで計算しています

実施フロー

実施計画から結果の分析まで、ワンストップで対応いたします。

設計

センサ設置

計測

キャリブレーション

影響線作成

車両重量算出 自動解析エンジン 高精度・高速処理

TTES B-WIM Ver 2.78

過積載車両検出

補修計画支援

ほか

TTES の B-WIM の特徴

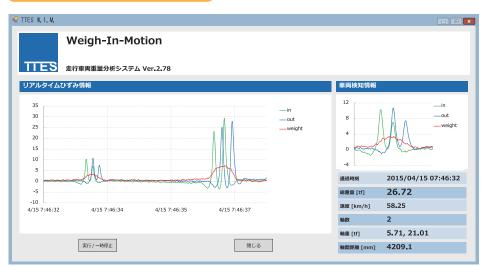
- ⑤ 過去の経験に基づくセンサ配置・処理方法の提案
- ・リアルタイム演算システム
- 二ーズに合わせた柔軟なカスタマイズ

実績

- 横浜ベイブリッジ下路(国道357)
- 🐧 東京ゲートブリッジ
- ⑤ 国交省 地方自治体 NEXCO 管理橋梁

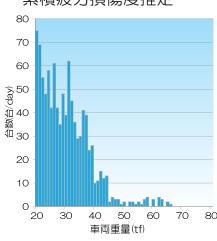
◆TTES は、東京工業大学が所有する登録特許権(橋梁の特性変化検出システム、特許第 3896465 号)に関して、特許権専用実施権設定契約を締結しております。

B-WIM の出力例


計測状況

過積載車両の検出

計測画面



集計表

日時	曜日	走行	走行	速度	総重量	軸数	軸重
		車線		(km/h)	(tf)	(軸)	(tf)
2015/04/15 7:16:16	水	上り	1	60.1	30.5	3	8.2, 10.5, 11.8
2015/04/15 7:16:18	水	下り	2	55.8	40.1	4	8.2, 8.5, 10.5, 12.9
2015/04/15 7:21:37	水	上り	2	62.1	20.5	2	8.5, 12.0
2015/ 04/15 7:26: 56	水	下り	2	68.4	16.7	2	7.9, 8.9
2015/ 04/15 7:32: 14	水	下り	1	55.6	12.9	2	6.5, 6.4
2015/04/15 7:46:32	水	下り	2	43.2	9.1	2	4.0, 5.1
2015/04/15 7:37:33	水	上り	1	52.5	52.1	4	10.0, 11.2, 15.3, 15.6
2015/04/15 7:42:52	水	上り	2	43.2	14.7	3	5.6, 5.2, 3.9

重量別の交通量集計

累積疲労損傷度推定

(曜日ごとの交通量集計

交通量の把握

年・月ごとの交通量集計

交通流・量の変化把握

Tokyo Tech Engineering Solutions, INC.